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Abstract
Health-related acoustic signals, such as cough
and breathing sounds, are relevant for medi-
cal diagnosis and continuous health monitor-
ing. Most existing machine learning approaches
for health acoustics are trained and evaluated
on specific tasks, limiting their generalizabil-
ity across various healthcare applications. In
this paper, we leverage a self-supervised learn-
ing framework, SimCLR with a Slowfast NFNet
backbone, for contrastive learning of health
acoustics. A crucial aspect of optimizing Slow-
fast NFNet for this application lies in identify-
ing effective audio augmentations. We conduct
an in-depth analysis of various audio augmenta-
tion strategies and demonstrate that an appro-
priate augmentation strategy enhances the per-
formance of the Slowfast NFNet audio encoder
across a diverse set of health acoustic tasks.
Our findings reveal that when augmentations
are combined, they can produce synergistic ef-
fects that exceed the benefits seen when each is
applied individually.

Keywords: health acoustics, audio augmenta-
tion, contrastive learning

1. Introduction

Non-speech, non-semantic sounds, like coughing and
breathing, can provide information for doctors to de-
tect various respiratory diseases, cardiovascular dis-
eases and neurological diseases (Boschi et al., 2017;
Zimmer et al., 2022). Advances in deep learning-
based machine learning (ML) allow us to develop
medical assistants and continuous health monitoring

applications by learning effective acoustic data rep-
resentations (Alqudaihi et al., 2021).

Current approaches for learning health acoustic
representations are mostly trained and evaluated on
specific tasks. For example, Botha et al. (2018); Lar-
son et al. (2012); Tracey et al. (2011); Pahar et al.
(2021) trained models to detect tuberculosis using
cough sounds via supervised learning. However, it
can be challenging to adopt these models directly for
other health acoustic tasks. Retraining task specific
health acoustic models requires manual data collec-
tion and labeling by clinical experts, which can be
time consuming and costly.

Researchers within the ML community have ex-
plored various self-supervised strategies to learn
general purpose data representations that over-
come the limitations of domain-specific representa-
tions (Balestriero et al., 2023). Among these ap-
proaches, contrastive learning has proven effective
for generating robust representations across multi-
ple data modalities, including images, videos, speech,
audio, and periodic data (Chen et al., 2020a; Jiang
et al., 2020; Qian et al., 2021; Oord et al., 2018; Yang
et al., 2022). Selecting appropriate data augmenta-
tions is crucial for performant contrasting learning al-
gorithms (Chen et al., 2020a) (see Related Works for
details). Consequently, significant research has been
conducted on the utility of various augmentations
for images (Chen et al., 2020a), videos (Qian et al.,
2021), and speech/audio (Al-Tahan and Mohsen-
zadeh, 2021; Jiang et al., 2020). However, the unique
characteristics of health-related acoustic signals, such
as coughs and breathing sounds, which differ in pitch
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and tone from speech and music, raise questions
about the applicability of existing contrastive learn-
ing and augmentation strategies in this specialized
domain.
To address this research gap, our study system-

atically explores eight distinct audio augmentation
techniques and their combinations in the context
of health acoustic representation learning. We em-
ploy the self-supervised contrastive learning frame-
work, SimCLR (Chen et al., 2020a), with a Slowfast
NFNet backbone (Wang et al., 2022). After iden-
tifying the best combination of augmentations, we
compare the performance of the resulting Slowfast
NFNet against other state-of-the-art off-the-shelf au-
dio encoders on 21 unique binary classification tasks
across five datasets. This work offers two major con-
tributions: (1) we identify augmentation parameters
that work best when applied to health acoustics, and
(2) we investigate the synergistic effects of combining
audio augmentations for enhancing health acoustic
representations using SimCLR.

2. Related Works

In ML, data augmentation serves as a regulariza-
tion technique to mitigate the risk of model over-
fitting (Zhang et al., 2021). Within the framework
of contrastive learning, the objective is to learn data
representations that minimize the distance between
representations of semantically similar inputs and
maximize the distance between representations of se-
mantically dissimilar inputs. Data augmentations are
critical for contrastive learning-based self-supervised
learning (SSL), and eliminates the need for labeled
data for representation learning. By applying a va-
riety of augmentations to a single input, semanti-
cally consistent but distinct variations, commonly
referred to as views, are generated (Von Kügelgen
et al., 2021). The task then becomes pulling these
related views closer together in the representational
space, while concurrently pushing views derived from
different, unrelated inputs farther apart, via a con-
trastive loss, such as InfoNCE in SimCLR (Chen
et al., 2020a). This approach establishes a form of
invariance in the model, rendering it robust to the
augmentations applied during the training process.
Augmentations have been widely explored as part
of contrastive learning-based SSL methods such as
SimCLR, BYOL (Grill et al., 2020), MoCo (Chen
et al., 2020b), and SwAV (Caron et al., 2020). Data
augmentations also enhance the performance of SSL

methods broadly across different data modalities, in-
cluding images (Chen et al., 2020a), videos (Qian
et al., 2021), audio (Al-Tahan and Mohsenzadeh,
2021; Niizumi et al., 2021), speech (Jiang et al., 2020),
and 1-dimensional signals (e.g., human physiological
signals) (Yang et al., 2022). In this study, we turn our
attention toward a relatively underexplored domain:
the application of data augmentations strategies for
contrastive learning of health acoustic signals.

The most closely related area of research to our fo-
cus on health acoustics is the research investigating
augmentation strategies for speech and audio data.
Early research by Ko et al. (2015) explored creating
two augmented speech signals with speeds relative
to the original of 0.9 and 1.1. This yielded perfor-
mance improvements across four speech recognition
tasks. Jansen et al. (2018) expanded upon this by in-
troducing a triplet loss for audio representation learn-
ing, incorporating random noise, time/frequency
translation, example mixing, and temporal proximity
augmentations. Jiang et al. (2020) employed an adap-
tation of SimCLR for speech data, termed Speech
SimCLR, where they applied a diverse set of aug-
mentations: random pitch shift, speed perturbation,
room reverberation and additive noise to the origi-
nal waveform, as well as time and frequency mask-
ing to the spectrogram. Niizumi et al. (2021) de-
veloped a comprehensive audio augmentation mod-
ule including pre-normalization, foreground acous-
tic event mixup, random resize cropping and post-
normalization. Fonseca et al. (2021c) investigated
a multi-modal approach by adopting augmentations
from both vision and audio domains, including ran-
dom resized cropping, random time/frequency shifts,
compression, SpecAugment (Park et al., 2019), Gaus-
sian noise addition, and Gaussian blurring. They also
used sound separation techniques for sound event de-
tection to enable targeted data augmentations (Fon-
seca et al., 2021b). Shi et al. (2022) explored the im-
pact of noise injection as an augmentation strategy to
bolster the robustness of speech models. CLAR iden-
tified six augmentation operations: pitch shift, noise
injection in frequency domain, and fade in/out, time
masking, time shift, time stretching in the tempo-
ral domain, and explored their utility for audio con-
trastive learning (Al-Tahan and Mohsenzadeh, 2021).
In this study, we build upon these ideas to system-
atically investigate the optimal combination and se-
quence of augmentation strategies, with a specific fo-
cus on developing robust representations for health
acoustics.
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3. Methods

The study is structured into three phases. The first
phase consists of finding the best parameters for each
augmentation that we consider for use with SimCLR.
In the second phase, we investigate various combi-
nations of augmentations, where we apply one or
two successive augmentations to create each view of
the input. Here, we use the augmentation parame-
ters that we select in the first phase. In the third
phase, we compare the results of our best performing
model to other state-of-the-art audio encoder models
on the validation set used for comparing augmenta-
tions. We choose to hold out the test sets due to ongo-
ing model development and these results may thus be
optimistic. This evaluation involves 21 unique down-
stream tasks across five datasets and we investigate
the quality of embeddings generated from each au-
dio encoder using linear probing (Köhn, 2015). Our
study employs SimCLR with a 63 million parame-
ter SlowFast NFNet-F0 as the neural network back-
bone (Chen et al., 2020a; Wang et al., 2022).

Audio Augmentations We investigate eight aug-
mentations (Figure 1). These include the following
time-domain augmentations: crop and pad, noising,
Brownian tape speed (Weng et al., 2023), scaling,
pitch shift, time stretch, and circular time shift. Ad-
ditionally, we experiment with SpecAugment which is
applied after the transformation of audio inputs into
spectrograms (Park et al., 2019). A description of
each augmentation strategy is provided in Appendix
Table A1.

Each of the augmentations offers a tunable param-
eter space to allow for varying degrees of transfor-
mational intensity. To identify the optimal hyper-
parameters for each specific augmentation, we first
conduct an exhaustive grid search. After we deter-
mine the best augmentation parameters, we explore
the potential synergistic effects from the sequential
application of either one or two successive augmenta-
tions. Since we include 8 augmentations, experiment-
ing with every permutation of one or two augmenta-
tions would result in 64 experiments. However, in this
work, SpecAugment was only applied after the time
domain augmentations which reduced the number of
2-step augmentations to 57.

Datasets For this study, we curate a training
dataset, YT-NS (YouTube Non-Semantic), consisting
of two-second long audio clips extracted from one bil-
lion non-copyrighted YouTube videos, totalling about

Figure 1: Mel spectrograms generated from various
augmentations applied to the same health
acoustic sample. One two-second exam-
ple from the CoughVID dataset (Orlandic
et al., 2021) is acquired and modified by
each augmentation method.

255 million 2s clips or 142k hours. We apply a con-
volutional neural network-based health acoustic de-
tector model, trained on two public health acous-
tic AudioSet derivatives, FSD50K and Flusense, as
well as another health acoustic dataset. We use this
model to filter two-second audio clips from these one
billion videos for the following health acoustic sig-
nals: coughs, speech, laughing, throat-clearing, baby
coughs, and breathing. Estimated numbers of each
of these clips is provided in Appendix Table A2. The
Slowfast NFNet encoder is trained solely using this
dataset.

For evaluation, we use five publicly avail-
able datasets, FSD50K (Fonseca et al., 2021a),
Flusense (Al Hossain et al., 2020), PSG (Korompili
et al., 2021), CoughVID (Orlandic et al., 2021),
and Coswara (Bhattacharya et al., 2023). We de-
scribe evaluation datasets in Appendix Table A3.

Evaluation 21 unique downstream binary classifi-
cation tasks across five datasets are leveraged to eval-
uate the quality of health acoustic representations
generated from the learned audio encoders, includ-
ing 13 human acoustic event classifications, five sleep
apnea-specific tasks, and three cough relevant tasks.
The cough tasks include COVID detection, sex clas-
sification, and smoking status classification.
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For phases 1 and 2 of our study where we iden-
tify the best parameters for each augmentation, as
well as the best combination of augmentations, we de-
velop a composite score that aggregates performance
across the various downstream tasks. The PSG,
CoughVid, and Coswara datasets are segmented into
two-second clips. For Flusense, we preprocess the
data by segmenting variable length clips using the
labeled timestamps. For FSD50K and Flusense, we
adopt a lightweight evaluation strategy where we ran-
domly sample a single two second long clip from
each longer clip. We take the average area under
the receiver operating characteristic curve (AUROC)
across these tasks and use this composite measure to
rank augmentation strategies.

For phase 3, we segment the PSG data into 10 sec-
ond clips, and for FSD50K and Flusense, we crop or
zero pad each clip to 10 seconds. We adopt a sliding
window approach for FSD50K, Flusense, and PSG,
where embeddings are generated for two-second win-
dows with a step size of one second. We apply mean
pooling to the resulting embeddings to generate our
final output embedding.

For all phases, we use linear probing to evaluate
the quality of the generated representations. We use
logistic regression with cross-validated ridge penalty,
which is trained to predict binary labels from the
frozen precomputed embeddings (Köhn, 2015). We
report AUROC for all tasks and use the DeLong
method to compute the 95% confidence intervals
(CIs) (DeLong et al., 1988).

Baseline Models For comparative evaluation, we
consider several off-the-shelf audio encoders, each
trained on semantic or non-semantic speech data.
Specifically, our baseline models include TRILL (Shor
et al., 2020), which is a publicly available ResNet50
architecture trained on an AudioSet subset that is
enriched with speech labels. FRILL (Peplinski et al.,
2020) is a light-weight MobileNet-based encoder dis-
tilled from TRILL. BigSSL-CAP12 (Shor et al., 2022)
leverages a Conformer-based architecture, trained on
YouTube and LibriLight.

4. Results

Optimal augmentation parameters In Ap-
pendix Table A1, we display the optimal parameters
for each augmentation derived from the associated
grid searches. We find that up to a certain thresh-

old, generally more intense augmentation parameters
yield better performance.

Comparing augmentations Comparing the left
and right panels of Figure 2 shows that many aug-
mentations perform better in combination than in-
dividually. Our analysis indicates that the most
effective single augmentation strategy is SpecAug-
ment (left panel in Figure 2). The most effective 2-
step augmentation strategy involves applying circular
time shift , followed by time stretch, as depicted in
Figure 2. Interestingly, circular time shift does not
perform well on its own and each of these augmenta-
tions individually underperform SpecAugment. How-
ever, circular time shift and time stretch are synergis-
tic when applied together. The right panel of Figure 2
shows that on average, time stretch is the most useful
first augmentation, excluding SpecAugment which is
always applied second or alone. SpecAugment is the
most useful second augmentation on average.

Comparing to baselines Appendix Tables 4, 5
demonstrate performance of the best SimCLR model
versus the baseline models on the validation set
used for the comparison of augmentations. Overall,
the performance of the SimCLR model is similar to
BigSSL-CAP12, despite training on about 10x less
hours of data and using a model that is nearly 10x
smaller, and outperforms off-the-shelf audio encoders.

Figure 2: Evaluation performance for comparing
augmentation combinations. (Left) from
single augmentations. (Right) two aug-
mentations applied where rows represent
the first augmentation and columns repre-
sent the second augmentation.
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5. Discussion and Conclusion

We investigated a comprehensive list of augmenta-
tions for use in the health acoustic domain. We
demonstrated the synergistic benefit of the circular
time shift and time stretch augmentations. Circular
time shift and time-stretching may synergistically im-
prove model generalizability by introducing a diverse
range of temporal patterns for the same sound.

There are few limitations worth noting. We de-
cided to keep our test sets held out for ongoing model
development, thus our comparisons to baselines may
be optimistic. We also confined our analysis to a sin-
gle Slowfast NFNet architecture. This leaves open
the possibility that different architectures could yield
varying results. Future research may focus on other
augmentations, including frequency domain augmen-
tations, as well as augmentations that better leverage
health acoustic inductive biases. Additionally, incor-
porating labels during training (Khosla et al., 2020),
such as health signal type, may further improve the
learned representations.
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Appendix A. SimCLR hyperparameters

For training, we use 32 TPU-v3 cores with a batchsize of 4096. We use an AdamW optimizer with default
parameters and a learning rate of 1.6e-3. We train all models for at least 300k steps, saving checkpoints
every 5k steps. We select checkpoints that exhibit the best performance on the validation data after applying
an exponential moving average, with a bias correction and a weight of 0.5, to the validation curves.

Appendix B. Appendix Tables

Augmentation Apply On Description Best Parameters
Grid Search

(Cartesian product of the lists)

Crop and pad Temporal
Crops the audio signal and then
zero-pads to the input length.

Probability = 1.0
Min fraction = 0.1
Max fraction = 0.5

Probability = [0.8, 1.0]
Min fraction = [0.1, 0.3, 0.5]
Max fraction = [0.3, 0.5, 0.7]
Only when max fraction >min fraction

Noising Temporal Adds gaussian noise to the audio signal.
Probability = 1.0
Mean = 0.2
Stddev = 0.2

Probability = [0.8, 1.0]
Mean = [-0.2, 0.0, 0.2]
Stddev = [0.2, 0.4, 0.6]

Brownian tape speed Temporal
Simulates playing back the signal on a
tape while the playback speed at each time
step is drawn from a normal distribution.

Probability = 0.8
Magnitude = 20

Probability = [0.8, 1.0]
Magnitude = [2, 10, 20]

Scaling Temporal Modifies the audio gain.
Probability = 0.8
Min factor = 0.25
Max factor = 1.75

Probability = [0.8, 1.0]
Min factor = [0.25, 0.75, 1.25]
Max factor = [0.75, 1.25, 1.75]
Only when max factor >min factor

Pitch shift Temporal
Moves the pitch of the audio up or down
without changing its speed.

Probability = 0.8
Min factor = 1.25
Max factor = 1.75

Probability = [0.8, 1.0]
Min factor = [0.25, 0.75, 1.25]
Max factor = [0.75, 1.25, 1.75]
Only when max factor >min factor

Time stretch Temporal
Slows and speeds up the audio signal
without changing its pitch.

Probability = 0.8
Min time stretch = 0.75
Max time stretch = 1.75

Probability = [0.8, 1.0]
Min time = [0.25, 0.75, 1.25]
Max stretch = [0.75, 1.25, 1.75]
Only when max factor >min factor

Circular time shift Temporal
Translates the audio signal temporally
without truncating the signal,
while wrapping along the time axis.

Probability = 1.0 Probability = [0.8, 1.0]

SpecAugment Spectrogram
Applies masking to the temporal and
frequency axes.

Probability = 1.0
Time mask max frames = 24
Time mask count = 20
Frequency mask max bins = 20
Frequency mask count = 5

Probability = [0.8, 1.0]
Time mask max frames = [24, 36]
Time mask count = [10, 20]
Frequency mask max bins = [10, 20]
Frequency mask count = [3, 5]

Table A1: Description of the augmentation strategies used in the study.

Class Estimated # Audio Clips

Cough 77,000,000
Speech 65,100,000

Laughing 77,240,000
Throat clearing 3,300,000
Baby cough 800,000
Breathing 31,500,000

Table A2: Number of YouTube audio clips used for training.
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Dataset Tasks
Number of examples for
training linear probes

Number of examples
for evaluation

Reference

FSD50K Health acoustic event (6 tasks) 32,652 8,313 Fonseca et al. (2021a)

Flusense Health acoustic event (7 tasks) 7,537 1,779 Al Hossain et al. (2020)

PSG Apnea, arousal events (5 tasks) 7,320 3,625 Korompili et al. (2021)

CoughVID COVID, sex (2 tasks) 44,249 15,083 Orlandic et al. (2021)

Coswara COVID, sex, smoking status (3 tasks) 10,230 4,285 Bhattacharya et al. (2023)

Table A3: Evaluation datasets statistics.

Dataset Task TRILL FRILL BigSSL-CAP12 SimCLR (ours)

FSD50K Breathing 0.973 (0.958, 0.988) 0.974 (0.961, 0.987) 0.983 (0.973, 0.993) 0.982 (0.969, 0.995)
Cough 0.988 (0.982, 0.994) 0.986 (0.979, 0.993) 0.998 (0.996, 1) 0.999 (0.998, 1)

Laughter 0.985 (0.978, 0.992) 0.984 (0.977, 0.992) 0.994 (0.988, 0.999) 0.991 (0.983, 1)
Sneeze 0.913 (0.757, 1) 0.960 (0.896, 1) 0.997 (0.995, 1) 0.988 (0.969, 1)
Speech 0.970 (0.958, 0.982) 0.972 (0.962, 0.983) 0.982 (0.974, 0.991) 0.978 (0.967, 0.988)

All Respiratory sounds 0.978 (0.972, 0.985) 0.979 (0.973, 0.985) 0.985 (0.977, 0.994) 0.990 (0.984, 0.995)

Flusense Breathe 0.732 (0.602, 0.861) 0.741 (0.614, 0.869) 0.769 (0.636, 0.902) 0.816 (0.706, 0.925)
Cough 0.656 (0.614, 0.698) 0.658 (0.616, 0.700) 0.675 (0.635, 0.716) 0.703 (0.662, 0.743)
Gasp 0.731 (0.624, 0.837) 0.721 (0.618, 0.824) 0.766 (0.676, 0.855) 0.777 (0.675, 0.880)
Sneeze 0.719 (0.663, 0.776) 0.717 (0.66, 0.773) 0.780 (0.731, 0.829) 0.789 (0.740, 0.838)
Sniffle 0.734 (0.671, 0.798) 0.727 (0.662, 0.791) 0.717 (0.648, 0.787) 0.762 (0.697, 0.827)
Speech 0.711 (0.670, 0.751) 0.701 (0.659, 0.742) 0.764 (0.724, 0.804) 0.751 (0.715, 0.788)

Throat clearing 0.811 (0.692, 0.931) 0.756 (0.620, 0.891) 0.914 (0.863, 0.964) 0.788 (0.671, 0.905)

PSG OSA 0.681 (0.643, 0.720) 0.697 (0.658, 0.736) 0.770 (0.735, 0.806) 0.700 (0.663, 0.738)
Central 0.640 (0.441, 0.838) 0.695 (0.537, 0.852) 0.725 (0.553, 0.896) 0.690 (0.510, 0.870)
Mixed 0.728 (0.658, 0.797) 0.732 (0.663, 0.800) 0.788 (0.726, 0.850) 0.719 (0.654, 0.783)

Hypopnea 0.497 (0.445, 0.549) 0.537 (0.485, 0.588) 0.639 (0.590, 0.688) 0.549 (0.500, 0.597)
Arousal 0.716 (0.674, 0.759) 0.732 (0.691, 0.772) 0.728 (0.686, 0.770) 0.784 (0.746, 0.822)

Table A4: Performance comparison (AUROC with 95% confidence intervals) on downstream tasks in
FSD50K, Flusense and PSG datasets. OSA: obstructive sleep apnea.

Task Dataset TRILL FRILL BigSSL-CAP12 SimCLR (ours)

COVID CoughVID 0.613 (0.592, 0.634) 0.611 (0.59, 0.632) 0.621 (0.6, 0.642) 0.622 (0.601, 0.643)
Coswara 0.573 (0.54, 0.607) 0.591 (0.557, 0.625) 0.597 (0.565, 0.628) 0.769 (0.752, 0.785)

Smoker Coswara 0.62 (0.589, 0.651) 0.579 (0.548, 0.609) 0.624 (0.594, 0.654) 0.591 (0.560, 0.621)

Sex CoughVID 0.839 (0.831, 0.847) 0.83 (0.822, 0.838) 0.847 (0.839, 0.855) 0.862 (0.854, 0.869)
Coswara 0.872 (0.861, 0.883) 0.827 (0.814, 0.84) 0.900 (0.890, 0.910) 0.903 (0.893, 0.913)

Table A5: Performance comparison (AUROC with 95% confidence intervals) on downstream tasks in
CoughVID and Coswara datasets.
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